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The linearized problem of phase transformations at the walls of a slot system 
with relatively small pressure differences is formulated. The solution is ob- 
tained in a quasisteady approximation. 

Equation (ii) of [i] describes the quasisteady phase transformations in a slot system 
when the intensity of the process is determined by the hydraulic drag of the system and the 
thermodynamic drag of the walls, and the external surfaces of the walls are maintained at 
constant temperature. If relatively small pressure differences are realized in the narrow 
gap between parallel plates of arbitrary shape in plan view (Hmax - Hmin ~ Hmin), the prob- 
lem may be linearized by introducing a small perturbation g' = ~ - H, = o(H,). After sub- 
stituting the new variables ~ = ~0-i/251, N = m0-1/2N1, H 1 = i + H'/H, into Eq. (ii) of [i], 
expanding the functions appearing there in Taylor series with respect to the small parameter 
H'/~,, and retaining only the first-order terms in these expansions, an inhomogeneous Helm- 
holtz equation is obtained 

VZH ' @ mlH' @ A o = O. (I) 

On the open (r=n+1) and closed (r2n) sections of the slotted contour, the following boundary 
conditions must hold 

on' (2) 
ll'~H~n+l on r~+1, ON _0on L~. 

This problem is uniquely solvable if the coefficient A I does not coincide with any of the 
eigenvalues of the corresponding homogeneous problem, which are positive numbers [2]. How- 
ever, A m < 0, since g = O(Kn), and hence for the viscous and molecular-viscous conditions 
given in [1] and here, e << 1. 

An equation of the type in Eq. (1) obtained in [3] by the methods of molecular-kinetic 
theory describes the fields of different physical nature, say, the temperature field of 
the walls of a slot system over a wide range of Kn, if homogeneous sublimation (desublima- 
tion) occurs on account of heat supply (extraction) at the walls, and the transfer processes 
depend significantly on the phase resistance. Note that, in the latter case, AI is not al- 
ways negative, which somewhat complicate s the analysis of such problems. 

This analogy permits the usa of. the analytical results of all the examples in [3] for 
the processes here considered. Attention will be confined to the two simplest problems: 
phase transformation at the walls of a narrow slot channel (length 2L) open on both sides 
and in the gap between two parallel disks (radius L). These problems are somewhat more 
complicated than those considered in [1], on account of the assumption that the phase trans- 
formations do not occur over the whole internal surface but are localized within the limits 
I$[ > ~' ~ i, so that the dimensionless excess pressure n' on the sections $' < I~I < :I must 
satisfy the Laplace equation V2H ' = 0. Thus, the problem is reduced to solving an ordinary 
differential equation 

d~n ' + v dIr ~J II' 4- Ao ---- 0 ( 3 )  
dp ~ d~ 
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with a piecewise-constant coefficient ~02 equal to A I when Igl < $' and 0 when $' < 151 < i. 

The desired function g' must satisfy a homogeneous boundary condition of the first kind 
in the section of the gap and also conditions of smoothness and continuity at the boundary 
of the phase-transformation zone. In addition, the obvious symmetry condition at ~ = 0 must 
be satisfied. Hence 

dn' (0) _ O, n '  (%'--o) = n ' ( % ' + o ) ,  
d~ (4) 

dn'  (%'-- O) = . . d H ' ( g ' + 0 )  ; H ' ( 1 ) = O .  
d~ d% 

In the phase-transformation zone I~I < $' ([~*I < ~*') 

11' = A ,  [ 1 - -  | (%,, 

% (~,, %;) = 

~,)1; A, = Ao/~.~ = (II,/~) ~@~; 

ch %, (~, = %0~); 
ch %, + (~-o - -  %,) sh ~* 

:o (%,) 
4 (~;) + ~, (m ~o - m ~;) 4 (%b 

(5) 

(6 )  

As in [3], the relations obtained may be used to determine the sublimation time of 
the coating applied in a thin homogeneous layer on the internal surface of the walls of a 
slot system if the process occurs quasisteadily. This is a natural assumption in consider- 
ing the wear of coating material, which occurs very slowly, as a rule. In the general case, 
studying the kinetics of quasisteady sublimation of a thin layer at the walls of a slot 
device reduces to solving sufficiently complex nonlinear and nonsteady functional equations. 
However, as in [3], the singularity of the two examples considered is that, in these cases, 
the quasisteady sublimation process of a coating applied in a layer of thickness A << h oc- 
curs self-similarly. In fact, in view of Eq. (5) and also Eq. (7) from [i], with symmetric 
heat supply through both walls, the mass flux density of sublimate from the sections of the 
wall still having a coating (~, < $,') is 

& ( L ,  ~*) = & + ~ ( L ,  %*)- (7)  

T o g e t h e r  w i t h  Eq. ( 6 ) ,  Eq. (7)  means t h a t  h e r e ,  as  in  t h e  examples  in  [3 ] ,  t h e  f l u x  d e n s i t y  i s  
always distributed according to the same law along the surface where the coating is still 
present, the area of which decreases over time, regardless of the position of the boundary 
$,'(t), although the profile Jv[~*, $,'(t)] is deformed similarly over time. Hence, as in 
[3], the dimensionless time %v of motion of the boundary of the phase-transformation zone 
from its initial position $,0 to 0 in the two examples considered is determined by the ex- 
pressions 

1 ~o ~0 (%o) : ~ (%0)2 + (~0 - -  %0) (~, _ th %0); 
( s )  

~1 (%0) = T (%0)2 I~- %$ In 
\ ~ , ]  2 10(~~ 

The t ime  p r e c e d i n g  t h e  o n s e t  o f  boundary  mo t ion ,  i . e . ,  t h e  s u b l i m a t i o n  t ime  of  t h e  c o a t -  
ing a l o n g  t h e  i n i t i a l  bounda ry  l i n e  ( 5 ,  = 5 , ~  must be added t o  t h e  above  t ime  i n t e r v a l s ;  
as in [3], this time is determined by the formulas 

\ ~, ] 4 (%0) 
The total sublimation time Or* = %v + %vi is 

(9) 

~. (~o)~; ~ .  = 1 + --f- m + (~o)~ 
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The relation between the dimensional time t and the dimensionless time % is given by the 
following expression in the present work, in contrast to [3] 

~= ~o T, SO,~, t. 
~o poAo A 

If the internal surface of the gap is initially covered completely by the subliming 
layer, so that $0 * = $0, the sublimation time will depend quadratically on the length of the 
plane channel or the disk radius, since in this case 

At very small m (materials with a high latent heat of sublimation; for example, in 
water at the triple point, m ffi 0.04457) and moderate values of the dimensionless number 
m 0 = 3(DL2T,X0)/(h3p,60) characterizing, in the familiar sense, the relation between the 
hydraulic resistance of the slot system and the thermal resistance of the walls, when $02 << 
i, the total sublimation time of the coating is practically determined by the first stage 
(~i) in view of Eqs. (7)-(9), since the sublimation rate is almost the same over the whole 
extent of the slot system and is only limited by the thermal resistance of the walls; the 
hydraulic resistance of the sublimate flowing in the gap is negligibly small. As is evident 
from Eq. (9), ~v* = i + 0($02 ) in this case. 

NOTATION 

X(• 6(• thermal conductivities and wall thicknesses of slot system; T (• J(• 
temperatures of external surfaces of these walls and flux densities of sublimate there; 2h, 
magnitude of gap; L, characteristic linear scale in median plane of slot system; ~, viscos- 
ity of sublimate at T = T,; A, latent heat of sublimation; t, time of process; A0, initial 
thickness of subliming coating; P0, density of desublimate;~p,, T,, characteristic pressure 
and temperature values of sublimate at saturation line; x = L~, y = Lq, Cartesian coordinates 
in medium plane of gap; R, gas constant; o0, proportion of molecules reflected diffusely 
from walls; 8/aN, derivative in the direction of the external normal to the contour bounding 
the perimeter of the slot system; ~ = 0 or 1 in the case of a plane channel or a gap between 

disks, respectively; X(• = X0, 6(• = 6o, T(• = To with symmetric heat supply; K(• = 

k(•177 m = RT,/A; ~0 = (3/2)'(~L2T~-/h3P-'-)(K(+) - K(-)); ~ = ph2/~LV; H, = p,h2/DLV; 

6o(• = o(• i; o = TITs; aOw = (K(+~60 (+~ + K(-)60(-))I(K (+) + K(-)); A~ -(~0~2)i(1+ 
E); A 0 = [(m0~H,)/(l + e)]6Ow; V, characteristic velocity of sublimate motion; e = (3.78. 

~/~/hp,),(2 - o0)/o 0 -(9/4). (p2R2T2,/h2p2,A); ~02 = -Al; @v($*, $*'), function defined in 

Eq. (5); ~, = $05; A, = A0/g02 = (N/m)6Ow; Jm = (T*/A)'(k0/60)60w; $'(t), coordinate of the 

boundary of the phase-transformation zone; ~ = (lo/6o).(T,6@/poAoA)t, dimensionless time of 
process; I0(x), If(x), Bessel function. 
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